1. INTRODUCTION 3
1.1 Foreword.................................................3
1.2 Scope ......................................................3
1.3 Terminology ..........................................3
1.4 Certifications .........................................3

2. WARNINGS AND PRECAUTIONS 4
2.1 Installer Requirements ............................4
2.2 Occupational Health and Safety ...............4
2.3 Over Pressure and Temperature Protection ....4
2.3.1 Pressure Temperature Relief .................4
2.3.2 Mains Pressure Control .......................4
2.3.3 Heat Exchanger Insulation ................. 4
2.4 Water Quality .........................................4
2.5 Legionella Control ...................................4
2.6 Weather Related Issues and Acts of God ....5
2.6.1 Freeze Protection .............................. 5
2.6.2 Lightning Protection .......................... 5
2.6.3 Hall Resistance ................................. 5
2.7 Stagnation and No-Load Conditions .........5
2.7.1 Information on Stagnation ................. 5
2.7.2 Hydrogen Build Up .......................... 5
2.7.3 Water Boiling Temperatures ............... 5
2.7.4 Delayed Installation or Use ............... 6

3. INFORMATION FOR END-USER 6
3.1 How Solar Heating Works .......................6
3.1.1 Introduction ......................................6
3.1.2 Summer and Winter Solar Heating .......6
3.1.3 How the Thermann System Works .......6
3.2 How Boosting Works ..............................6
3.2.1 Boosting Explained ......................... 6
3.2.2 Legionella Bacteria - The Importance of Boosting 6
3.2.3 Electric Boosted Systems ................. 6
3.3 System Maintenance & Precautions ..........7
3.3.1 System Maintenance ......................... 7
3.3.2 Glass Lined Tank Precautions ........... 7
3.4 End-User Troubleshooting Guide .......... 8

4. PRE-INSTALLATION 9
4.1 System Sizing ........................................ 9
4.2 Site Inspection .........................................9
4.2.1 Collector Location ............................ 9
4.2.2 Mounting Frame Location ................. 9
4.2.3 Storage Tank Location ...................... 9
4.3 Transport and Unpacking .................... 10
4.3.1 Transport of Components ................. 10
4.3.2 Unpacking of Components ............... 10
4.4 Component Inspection .......................... 10
4.4.1 Evacuated Tubes & Heat Pipes ........ 10
4.4.2 Pump Station Inspection .................... 10
4.4.3 Mounting Frame System ................. 10

5. INSTALLATION 14
5.1 Mounting Frame System .......................14
5.1.1 Installation Notes ..............................14
5.1.2 Installation - Assembly Guide ...........14
5.1.3 Installation - Roof Fixing Guide .......15
5.1.4 Tin Roof Installation Example ...........15
5.1.5 Tiled Roof Installation Example ........15
5.2 Collector Manifold Connection .............16
5.2.1 Silver Soldering/Brazing ................. 16
5.2.2 Compression Fittings ....................... 16
5.2.3 Press Tools ......................................16
5.3 Pump Station ..........................................16
5.3.1 Installation Guide ............................16
5.3.2 Flow Meter Settings .........................16
5.4 Solar Differential Controller ...............16
5.4.1 Controller Settings ...........................16
5.4.2 Temperature Sensors .......................16
5.5 Insulation ..............................................16
5.6 System Filling and Air Purge .............. 17
5.7 Evacuated Tubes and Heat Pipes ..........17
5.7.1 Installation Notes ..............................17
5.7.2 Installation Guide ............................17
5.8 Auxiliary Boosting Components ..........17
5.8.1 Electric Booster Tank Thermostat and Element Setup 17

6. POST INSTALLATION 18
6.1 Commissioning ......................................18
6.1.1 System Operation Check ..................18
6.1.2 Photo Records ................................18
6.1.3 Rebate Forms .................................18
6.2 Maintenance ..........................................18
6.2.1 Damaged Tubes ...............................18
6.2.2 Insulation .......................................18
6.2.3 Draining the System .......................18
6.2.4 Over Pressure Protection Maintenance 19
6.2.5 Magnesium Anode Replacement .......19

7. APPENDIX 20
7.1 Thermann System Schematics ...............20
7.1.1 Thermann Electric Boosted Solar Hot Water System 20
7.2.1.1 Wind Loading Conditions .............21
7.2.1 Wind Loading Conditions in Region A/B ...21
7.2.1.2 Wind Loading Conditions in Region C ...21
7.2.2 Installation Conditions ......................21
7.2.3 Installation Frame Configuration .......24
7.4.1 Mounting Frame Configuration ..........24
7.4.2 Tube Flush Mount ............................24
7.4.3 2 Tube Flush Mount .........................25
7.4.3 30 Tube Flush Mount .......................26
7.4.6 30 Tube Flush Mount .......................27
7.5 Thermann Component Information .......28
7.5.1 Glass Lined Storage Tank Dimensions ...28
7.5.2 Thermann Pump Station Dimensions ..28
7.5.3 Collector Technical Specifications .......28
7.6 Thermann Warranty Policy .................30

1. Introduction

1.1 Foreword
Congratulations on taking a major step towards reducing your total home energy usage and making a positive difference to the environment we live in. Thermann is a provider of premium solar hot water systems. These systems use high efficiency evacuated tube collectors to provide free hot water generated purely by the sun’s energy.

1.2 Scope
This manual has been designed to cater for the needs of the end-user, installer and service agent. Refer to section ‘1.7 Thermann System Schematics’ for AS/NZS2721:2007 approved system designs.

Any deviation from these system designs will NOT be eligible for government or state rebates. Customised system designs and larger commercial systems should be validated and approved by a qualified hydraulic engineer prior to installation in collaboration with Thermann.

1.3 Terminology
The terminology used from region to region differs and so to avoid confusion please note the following terminology.
- Boost - The process where a heating component (such as an electric element or gas heater) is used to provide additional heating when solar-heated water is not of an adequate temperature.
- Collector - The Thermann solar collector is the manifold with heat pipes and evacuated tubes inserted.
- Expansion control valve (ECV) - Installed on the cold mains line to relieve excessive pressure.
- Flow Line - indicates the plumbing line running from the tank (or heat exchanger) to the inlet of the collector. This line incorporates the circulation pump.
- Header - is the copper “heat exchanger” pipes in the solar collector through which the water flows.
- Insolation - solar radiation level, expressed in kWh/m2/day
- Manifold - Refers to the solar collector which contains the header through which potable water flows.
- Office of Renewable Energy Regulator (ORER) - A statutory authority established to oversee the implementation of the Large-scale Renewable Energy Target (LRET) and the Small-scale Renewable Energy Scheme (SRES).
- Pressure temperature relief valve (PTRV) - installed on the hot water storage tank to relieve pressure, and excessive temperatures.
- Return Line - indicates the plumbing line running from the outlet of the collector back to the tank.
- Stratification - the passive separation of water into distinct layers of different temperatures; where the temperature at the top of the tank can be significantly higher than the temperature at the bottom.

1.4 Certifications
AS/NZS2721 - The Australian Standard for solar collectors. Testing to meet this includes resistance to glass breakage and impact resistance under certain conditions including hail, stagnation conditions, protection against water ingress and structural strength.

SRCC - The Solar Rating and Certification Corporation (SRCC) is a not for profit organization that assesses solar collectors. This allows solar collectors to be compared to one another on an independent platform. There is also a similar program for solar water heating systems.

Thermann has obtained SRCC DO-100 North America. Thermann has obtained SRCC DO-100 for the TH-22 & 30 tube evacuated tube solar collectors. Certification numbers: 100-2004030A/B/C/D

ITW - Solar Keymark is the most widely recognised European standard for solar collectors. The testing done through this standard ensures that the collectors are reliable in both performance and quality.

Thermann has obtained Solar Keymark certification for its TH-22 & TH-30 evacuated tube solar collectors."

AS/NZS3498 - Applies to the hot water system. By meeting this standard it means that the entire system meets requirements. Most importantly is the Watermark certificate meaning that all the products that Thermann provides in a given system from collector through to valves will meet Australian standard in relation to potable water.

Thermann has obtained AS/NZS3498 for all the systems available in the ORER register through Global Mark. The certification number is 40107.
2. Warnings and Precautions

2.1 Installer Requirements
Installation must be completed by a licensed plumber in accordance with the requirements listed below, as well as any relevant local standards and regulations.

- AS/NZS 5601.2004 – Gas Installations

2.2 Occupational Health and Safety
The installer must adhere to occupational health and safety guidelines and other relevant industry associations. Under no circumstances should any installer attempt to install an Thermann solar hot water system without reading and understanding this installation manual. For any queries contact your local Reece branch.

2.3 Over Pressure and Temperature Protection

2.3.1 Pressure Temperature Relief
Any system design must allow a means of pressure release at no more than 850kPa, using a PTRV. The PTRV must have a downward direction copper pipe connected that is open to the atmosphere, running the expelled hot water or air to a safe, frost free and appropriate drainage location. From time to time the PTRV may discharge small amounts of water under normal operations, this can be up to 10% of tank capacity. If the tank is installed indoors, a safe-tray must be installed beneath the hot water tank to safely collect any water expelled from the PTRV.

2.3.2 Mains Pressure Control
Where the mains pressure supply can exceed or fluctuate beyond the pressure of 500kPa, a pressure-limiting valve must be fitted to the cold mains line. The device is installed after the isolation valve (duo valve) and should have a pressure limit of 500kPa.

2.4 Water Quality
Water quality is an important aspect of system lifetime. For the system to be warranted, the water used in the system must meet the requirements outlined in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Water Quality Threshold Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>Total Hardness</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
</tr>
<tr>
<td>Chloride</td>
</tr>
<tr>
<td>pH Level</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
</tbody>
</table>

If in doubt contact your local water authority or have a water test completed. In areas of poor water quality all major components will have a reduced life due to the harshness of the water.

In areas with "hard water" (>200 mg/L or p.p.m), it is advised to install a water softening device to ensure the long term efficient operation of the system is met. It is also advisable that a glass-lined tank is used as opposed to a stainless steel tank, since the glass-lined tank has a sacrificial anode to protect from corrosion.

2.5 Legionella Control
Legionella bacteria can be found naturally in the environment and thrive in warm water and damp places. It can weaken the body’s immune system, which can increase the chances of developing Legionnaires’ disease.

To ensure legionella growth is inhibited, the boosting regime must meet the guidelines as shown in section 3.2.2 Table 3. This is in accordance with ‘AS3498.2009 Authorisation requirements for plumbing products - water heater and hot-water storage tanks’.

It is therefore, very important that the auxiliary boosting system remains on. It will only activate if the temperature falls below the temperatures outlined in section 3.2.2 Table 3.

2.6 Weather Related Issues and Acts of God

2.6.1 Freeze Protection
All Thermann systems have freeze protection built in. This is provided by the controller which will circulate water through the collector once the temperature falls below 4°C. This freeze protection method has passed Frost Level 2 protection (down to -15°C) in line with AS/NZS 2712:2007.

WARNING
Freeze protection will not operate if there is no power supply to the controller or pump.

2.6.2 Lightning Protection
At installation locations that are prone to lightning strikes, it is advisable to earth/ground the copper circulation loop of the collector to avoid lightning related damage, or electrical safety issues. Refer also to local building codes regarding lightning safety and grounding.

The inclusion of a residual-current device (RCD) is highly recommended for these lightning prone areas.

2.6.3 Hail Resistance
The borosilicate glass evacuated tubes have been tested under the Australian Standards requirement (AS/NZS 2712:2007 – Solar and heat pump water heater – design and construction). The impact resistance test results prove that the evacuated tubes are able to withstand impact from hailstones up to 25mm/1” in diameter at 25 m/s.

In the unlikely circumstance that an evacuated tube should become broken it can be easily replaced. The solar collector can still function properly with one or more broken tubes, however it will result in a reduced heat output from the collector. A broken evacuated tube should be replaced by professional installers or service agents only.

2.7 Stagnation and No-Load Conditions

2.7.1 Information on Stagnation
Stagnation refers to the condition that occurs when the pump stops running, due to pump failure, power blackout, or as a result of the high tank temperature protection feature built into the controller, which turns the pump off.

The system is designed to allow stagnation to prevent the tank from overheating. This means that the collector and plumbing in close proximity may reach temperatures of up to 170°C; therefore components that may be exposed to the high temperatures such as valves, plumbing or insulation, should be suitably rated.

The system designs listed in the ‘ORER’ Register meet the No-load system requirements detailed in AS/NZS 2712:2007. This means that they will not dump large volumes of water from the PTRV and do not require an auto air-vent.

When the temperature has reached 70°C throughout the storage tank, cold water entering the tank can cause gurgling noises. This is a normal occurrence in any hot water storage system and does not affect the system’s operation.

2.7.2 Hydrogen Build Up
Glass lined (vitreous enamel) tanks are fitted with a Magnesium anode to provide corrosion protection for the tank from the storage water. Small quantities of hydrogen gas can be released by the anode, which generally remains dissolved in the water and flushed away as hot water is used from the tank. Depending on the water quality there may be a degree of hydrogen build-up in the tank if the water heater hasn’t been used for two or more weeks.

To resolve the build-up of hydrogen within the tank "purge" the tank for approximately 30 seconds from the lever on the PTRV.

2.7.3 Water Boiling Temperatures
The boiling point of water varies based on the pressure within the hot water system. Under stagnation and no load conditions, the solar collector has the potential to reach temperatures well above 100°C. As the water temperature rises and water expands this creates pressure on the system. Hence as the temperature rises, so too does the boiling point of water. This is why the solar hot water system (despite being at temperatures in excess of 100°C) will not boil and produce steam. Table 2 illustrates how the boiling point increases with pressure.

<table>
<thead>
<tr>
<th>Table 2. The Relationship Between Pressure and Boiling Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (kPa)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>203</td>
</tr>
<tr>
<td>304</td>
</tr>
<tr>
<td>405</td>
</tr>
<tr>
<td>507</td>
</tr>
<tr>
<td>608</td>
</tr>
<tr>
<td>709</td>
</tr>
<tr>
<td>811</td>
</tr>
</tbody>
</table>
3. Information for End-User

3.1 How Solar Heating Works

3.1.1 Introduction
Thermann strongly believe in informing the homeowner about the basic operation of the solar water heating system. By gaining a basic understanding you can develop realistic expectations about the operation of the system, develop habits which maximise energy savings and most importantly, ensure safe and reliable operation.

3.1.2 Summer and Winter Solar Heating
Solar radiation is only half or one third as strong in the winter months compared to summer, and therefore not able to provide the same amount of hot water as in summer. For optimal performance of your solar system it is recommended that the collectors are pitched at latitude plus 10-20 degrees, Correct tilting of the system during periods of rainfall or snowfall. There is a high probability of water entering the manifold and causing damage to the glass wool insulation. If the installation cannot be completed fully and the system must be left dry for a period longer than 14 days, the collector must be covered. The manifold can be covered with a durable, waterproof cover to prevent water ingress, or access to insects or birds.

3.1.3 How the Thermann System Works

- The manifold and tubes should not be installed and sitting dry (no fluid) for more than 14 days. Prolonged dry stagnation may void the warranty as it could affect heat pipes or tube longevity.
- The manifold MUST NOT be left without tubes but installed on the roof for any period of time, particularly during periods of rainfall or snowfall. There is a high probability of water entering the manifold and causing damage to the glass wool insulation. If the installation cannot be completed fully and the system must be left dry for a period longer than 14 days, the collector must be covered. The manifold can be covered with a durable, waterproof cover to prevent water ingress, or access to insects or birds.

3.2 How Boosting Works

3.2.1 Boosting Explained
If the solar contribution during the day is not enough to raise the water to a suitable temperature, an electric or gas booster can provide additional heating. During sufficient sunny weather, the solar collector will normally be able to provide enough hot water, but during winter months and overcast days boosting will be required.

3.2.2 Legionella Bacteria - The Importance of Boosting
It is a legal requirement that water be heated on a regular basis to kill Legionella bacteria that can lead to Legionnaires disease. The frequency this temperature must be reached varies, and is explained in Table 3:

<table>
<thead>
<tr>
<th>Type of Thermann System Installed</th>
<th>Minimum heat requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom element electric boosted system</td>
<td>Once per week to 60°C</td>
</tr>
<tr>
<td>Mid element electric boosted system</td>
<td>Once per day to 60°C</td>
</tr>
</tbody>
</table>

3.2.3 Electric Boosted Systems
If the system is electric boosted, when the electric element is activated it will heat up all the water above the element to 60°C (or the thermostat setting). This heating can take as long as 3-4 hours if the tank is cold. Note: Thermann recommends that the electric booster is left on, or controlled by a suitable timer.

3.2.4 Gas Booster Explained
- Gas booster can provide additional heating. During sufficient sunny weather, the solar collector will normally be able to provide enough hot water, but during winter months and overcast days boosting will be required.

3.3 System Maintenance & Precautions

3.3.1 System Maintenance
- Cleaning - The Thermann tubes do not usually need cleaning, regular rain and wind should keep the tubes clean.
- Pressure & Temperature Relief Valve (PTRV) - The PTRV is located near the top of the hot water storage tank. It is designed to release pressure in the tank as water expands and contracts during normal heating. The lever on the PTRV should be carefully lifted for a few seconds then placed down, once every 6 months. This will help prevent any debris or scale build up in the valve.

WARNING

When the PTRV is lifted hot water will be discharged. Ensure the drain pipe from PTRV is clear.

- Visual Check - Thermann recommend periodic visual checks of your system:
  a. Check for leaks around the storage tank and pipework
  b. Ensure water is not entering the pump station
  c. If the tubes are safely visible from ground level, ensure all tubes are still dark in colour.
  (Note: if the tubes are a milky/white colour the vacuum has escaped and the tube will not be working as efficiently as it should be)

WARNING

Pipework can be extremely hot, do not touch any exposed copper piping.

3.3.2 Glass Lined Tank Precautions
- Glass lined (Vitreous enamel) tanks are fitted with a magnesium anode to provide corrosion protection for the tank from the stored water. Thermann recommend the anode be inspected at least every three (3) years, and serviced as required.
- Small quantities of hydrogen gas can be released by the anode which generally remains dissolved in the water. This is then flushed away during normal use.
- Depending on the water quality there may be a degree of hydrogen build up in the tank if the water heater hasn't been used for two or more weeks. To resolve the build-up of hydrogen within the tank "purge" the tank for approximately 30 seconds from the lever on the PTRV.
### 3.4 End-User Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Continuously Running</td>
<td>Air lock in manifold</td>
<td>Contact your local Reece branch</td>
</tr>
<tr>
<td>Pump Continuously Running</td>
<td>Insufficient flow rate</td>
<td>Increase pump speed</td>
</tr>
<tr>
<td>Pump is not circulating even during sunny weather</td>
<td>Maximum temperature reached in the tank</td>
<td>This is normal operation, controller switches pump off once maximum temperature is reached to prevent over-heating.</td>
</tr>
<tr>
<td>Pump is not circulating even during sunny weather</td>
<td>Possible sensor issue</td>
<td>Contact your local Reece branch</td>
</tr>
<tr>
<td>Why is the water not hot enough?</td>
<td>Freeze protection operation</td>
<td>This is normal, but if the pump is running more than once an hour, additional insulation on the collector line should be installed.</td>
</tr>
<tr>
<td>Why is the controller L.E.D. light flashing red?</td>
<td>Possible faulty non-return valve</td>
<td>Contact your local Reece branch</td>
</tr>
<tr>
<td>Why is the pump running at night?</td>
<td>Booster is not configured correctly</td>
<td>Electric booster should have the thermostat temperature set to at least 60°C. Booster must be left on off-peak, or controlled by timer.</td>
</tr>
<tr>
<td>Why is the water not hot enough?</td>
<td>Household hot water usage too high</td>
<td>Contact your local Reece branch for advice. Remember an efficient shower head uses 9 litres/minute. (10 minute shower = 90ltrs water)</td>
</tr>
<tr>
<td>Why is the water not hot enough?</td>
<td>Tempering valve installed</td>
<td>A tempering valve must be installed on every solar hot water system. Tempering valves will mix water down to 50°C. Tempering valve may need replacing or servicing.</td>
</tr>
</tbody>
</table>

### 4. Pre-Installation

#### 4.1 System Sizing

System sizing is crucial to ensure that all the hot water needs for the home are being met. The system is designed to meet 90-100% of the household needs in summer and 50-60% in winter.

A number of considerations need to be made including: the number of residents in the house, the time of day when most hot water will be used, the location of the customer within Australia and the resources available on site.

Thermann has designed its systems to meet the optimal demand required in most residential homes for domestic hot water requirements. Figure 1. Shows a sizing guide which can be used as a “Rule of Thumb” for choosing a system that best meets the needs of the household.

![Figure 1. Collector sizing guide](image)

#### 4.2 Site Inspection

##### 4.2.1 Collector Location

The location of the solar collector is crucial to achieving optimal system performance. A number of factors need to be considered when determining the placement of the collectors on the roof of a building. These are detailed below:

- **Solar collector vicinity to tank:** The collector should be positioned as close as possible to the storage tank to avoid long pipe runs and minimise heat loss.
- **Collector Orientation with respect to the sun:** To ensure optimal heat output the collector should face the equator, which in Australia and New Zealand (Southern hemisphere) is due North. A deviation of up to 15° east or west off due north is acceptable, and will have minimal affect on heat output.
- **Collector Plane:** Both sides of the manifold can be used interchangeably as the inlet and outlet ports. However, if the manifold is not level horizontally, the higher side must be used as the outlet since hot water rises.

##### 4.2.2 Mounting Frame Location

Prior to installation of the mounting frame it is essential to carry out a site inspection and ensure that the site is compliant with the conditions stipulated in section ‘7.2 - Conditional Requirements’.

In the case where conditional requirements are not met, a certified structural engineer may also be consulted prior to install to provide professional design work that will allow for the site to accommodate Thermann certified mounting frame systems.

##### 4.2.3 Storage Tank Location

- The storage cylinder should be located as close as possible to the most frequent draw off points in the building such as the bathroom or kitchen. If the storage cylinder is located a long way from hot water draw points a hot water circulation loop on a timer...
may be considered to reduce the time-lag for water to heat up and resultant water wastage.
• The tank should not obstruct any windows, doors or exits and should cause minimal intrusion to the existing site.
• For glass-lined tanks, consider the requirement of anode removal and replacement maintenance.

4.3 Transport and Unpacking

4.3.1 Transport of Components
• When transporting boxes, note the orientation of the “THIS WAY UP arrows”.
• Ensure all boxes are strapped and secured to prevent movement during transit.
• All tanks must be transported upright. Stacking is not recommended for any tanks.
• Products should always be handled with care. Damage occurred during the transportation is not covered under the product warranty.

4.3.2 Unpacking of Components
• When unpacking, take care to ensure that the components are not damaged in the process.
• Avoid using sharp blades or knives as this can scratch the surfaces of the products particularly the evacuated tubes and tanks.
• For evacuated tubes and heat pipes, tear open both ends of the box(es) to allow inspection of the vacuum at the bottom and for the heat pipes to be exposed for the application of heat transfer paste.

4.4 Component Inspection

4.4.1 Evacuated Tubes & Heat Pipes
• Ensure that the evacuated tubes are all intact, the bottom of each tube should be silver. If a tube has a white or clear bottom, it has lost its vacuum and should be replaced. In this case, the heat pipe should be removed and inserted into the replacement tube.
• The evacuated tubes have rubber tube caps on the end, these are to protect the bottom tip of the glass tube from being broken.
• Heat pipes are bright and shiny when newly manufactured, but will dull and may form dark-grey surface discoloration over time. This is due to mild surface oxidation (when exposed to air) and does not affect the heat pipe’s operation.
• Do not remove and/or expose the tubes to sunlight until ready to install, otherwise the heat pipe tip will become very hot, sufficient to cause serious skin burns. Note: The outer glass surface will not become hot.

4.4.2 Pump Station Inspection
Every domestic solar hot water system supplied by Thermann comes with an Thermann Pump Station Kit. The Thermann Pump Station Kit comes bundled with the essential components required for installation of a solar hot water system. The kit comes pre-packaged and can easily be connected to plumbing.

4.4.3 Mounting Frame System
Ensure that all necessary components required for installation have been received in the packaging. Figure 2 & 3 are diagrammatic guides showing what is included in a typical mounting frame system. Refer to 7.2.2. Appendix Table 6 & 7 for number of frame components required.

Note: The outer glass surface will not become hot.

**WARNING**

NEVER touch the inside of the evacuated tube or heat pipe tip after exposure to sunlight.
WEAR thick leather gloves if handling the heat pipe.
WEAR safety glasses at ALL times when handling the glass tubes.

LEFT BLANK INTENTIONALLY
Thermann Flush Mount

This diagram shows a typical cyclonic wind region C frame with 5 x tracks and 10 x L-bracket packs. Most regions across Australia require only 3 x tracks and 6 x L-Bracket Packs.

Figure 3. Flush-Mount Frame at 1800 mm spacing with 5 tracks.

1 Bottom Track
2 Track
3 Roof Rail
4 L-Bracket Pack

Thermann Tilt Mount

This diagram shows a typical cyclonic wind region C frame with 5 x tracks, 10 x L-Bracket packs and 5 x Rear-legs. Most regions across Australia require only 3 x tracks and 6 x L-Bracket Packs.

Figure 4. Tilt-Mount Frame at 1800 mm spacing with 5 tracks.

1 Bottom Track
2 Track
3 Roof Rail
4 L-Bracket Pack
5 X-Brace Pack
6 Rear Leg
5. Installation

5.1 Mounting Frame System

The Thermann solar evacuated tube mounting frame systems are made of high-grade extruded anodized aluminium frame 6005-T5. There are four easy to install mounting options: flush mounted with roof rail, flush mounted with roof straps, low angle tilt 30 degrees and high angle tilt 45 degrees.

Under a set of conditional requirements (see section 7.2 Conditional Requirements) these systems are certified to Australian Standard AS/NZS 1170.2:2011 Structural Design Actions Part 2: Wind Actions. See section 7.2 Mounting Frame Certification.

Check with local building authority to confirm whether or not this standard is a regulatory requirement.

5.1.1 Installation Notes

Installer is to provide the fixings for the frame to the roof, ensure the fixings are applied in accordance with section 7.2 Conditional Requirements and section 5.1.3 Installation – Roof Fixing Guide. Holes can be easily drilled into the extruded aluminium components. They are to be no larger than ø10 mm and not closer than 30mm centre to centre. Tighten frame bolts with spanners or short shafted socket wrenches only. DO NOT use power tools or long shafted tools that may over-torque the bolts (as stainless steel bolts are susceptible to galling/locking). Bolt assemblies come with spring washers to maintain long-term tension.

5.1.2 Installation – Assembly Guide

Thermann mounting frame systems come pre-packaged to ensure the most streamlined and simple assembly process. Use the following steps as a guide to assembly.

1. Lay the first roof rail down horizontally (add L-brackets if using a 5 track system).
2. Attach all tracks to the L-brackets, finger tighten all nuts and bolts. Ensure that the track is placed in the right location based on batten/purlin spacing.
3. Slide the bottom track into the bottom attachment plates and finger tighten all nuts and bolts.
4. For flush-mount frames attach the second roof rail. Continue onto Step 8.
5. For tilt-mount frames, lay down the second bottom track, but attach the L-brackets to the rear legs. Finger-tighten nuts and bolts.
6. Attach X-braces to the rear legs.
7. Attach tri-attachment plates to the track
8. Slide the manifold into the top attachment plates (as in Step 3 for the bottom track.)
9. Using a spanner, tighten all nuts and bolts used for attachment.

5.1.3 Installation - Roof Fixing Guide

To proceed with attaching the mounting frame to the roof, follow all fixing rules as per section 7.2.2 Installation Conditions (for certification to apply). Line up the roof rails with battens accordingly. For tilt-mount systems the batten/purlin spacing can be increased where the angle of the tilt decreases.

5.1.4 Tin Roof Installation Example:

For corrugated/tin roofs, place fixings on the peak of the roofing sheet material to minimize risk of leaks. Fixings are to be screwed into the batten with minimum 35mm embedment (for more details see section 7.2.2 Installation Conditions).

5.1.5 Tiled Roof Installation Example:

For tiled roofs (where drilling is undesirable) use Thermann roof straps to attach the frame to the battens/purlins. Note: systems installed on tiled roofs are not certified under AS/NZS 1170.2. Roof straps can also be attached to roof rails by drilling through them.
5.2 Collector Manifold Connection

5.2.1 Silver Soldering/Brazing
Soldering may be used to connect piping to the collector header pipe. Only use potable water grade brazing material. Care should be taken to avoid overheating the copper pipe and exposing the manifold casing to open flame.

5.2.2 Compression Fittings
Thermann collectors come supplied with 20mm flare x 12mm Male Iron (MI) 90° Elbows.

5.2.3 Press Tools
Seek manufacturers advice before using all press tools. Press tools are not suitable for direct manifold connection, or connecting multiple collectors together.

5.3 Pump Station

5.3.1 Installation Guide
Use the following steps as a guideline for installation of the pump station and connection to piping:
1. Remove the contents from the box.
2. Remove the Pump Station Cover from the base plate.
3. Position base plate on the wall making sure there is a clearance height of 1 to 1.5 metres on the vertical wall, either side of the pump.
4. With a spirit level and pen mark screw holes on the wall for base plate.
5. Drill holes for green plugs.
6. Insert Green plugs into the drilled holes.
7. Fix base plate to wall with the 4 screws and rubber isolators.
8. Plumb in flow lines to the circulation pump (with a flow meter and check valve above the pump).

5.3.2 Flow Meter Settings
As 4234.2008 Heated Water Systems – Calculation of energy consumption, Clause 3.7.2 – Low Flow Criteria stipulates that the maximum flow rate is 0.75 L/min/m² of collector aperture area. Table 5 shows the maximum flow rate settings for the various Thermann collectors.

<table>
<thead>
<tr>
<th>Collector Size</th>
<th>Maximum Flow Rate (L/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Tubes</td>
<td>1.5</td>
</tr>
<tr>
<td>30 Tubes</td>
<td>2</td>
</tr>
<tr>
<td>44 Tubes</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 5. Maximum flow rate requirements

Note: Each tube as 0.094 m² of aperture area

5.4 Solar Differential Controller

5.4.1 Controller Settings
The Thermann controller comes with temperature sensors and power leads already connected. For most installations there is no need to alter any of the settings. The controller has 3 sensor cables. The longest cable is for the roof sensor for the solar collector.

The controller comes pre-set with suitable settings for most domestic applications:
- Pump On: 8°C (Temperature differential between tank and roof sensors)
- Pump Off: 1°C (Temperature differential between tank and roof sensors)
- Top out = 85°C (Maximum tank temperature)
- Frost Protection = 4°C (temperature for when pump is forced to cycle)

The controller provides a digital display providing the 3 sensor temperatures and also signs when faults occur within the controller readings. To cycle through the temperature display readings press the NEXT button, the current displayed sensor is indicated on the display board through a flashing icon.

5.4.2 Temperature Sensors
Thermann solar rated tanks come with two temperature sensor ports. The bottom port connects to the Sensor 2 (S2), the middle port connects to the Sensor 3 (S3) sensor.

The third temperature sensor port is located on both sides of the manifold. Sensor 1 (S1) must be connected to the outlet (the higher side).

Use a thin layer of thermal paste when inserting all sensors. Ensure insulation covers the opening of the collector sensor port to prevent water ingress.

High temperature outdoor silicon sealant can be used to prevent water ingress to the manifold sensor port.

It is highly recommended that conduit be used to encapulate the roof sensor and act as another protective layer as it is prone to physical damage by local fauna and extreme weather conditions. The sensor cable should run along the outside of the insulation and secured every 20cm with UV resistant nylon cable ties.

5.5 Insulation
- All insulation needs to be solar-rated. Any insulation exposed to sunlight must be UV stabilised.
- Insulate all pipe running to and from the manifold with insulation of at least 15mm thickness, or 25mm in cold climates.
- Ensure the insulation is tight against the manifold casing, thus minimising loss of heat from the inlet and outlet.
- All internal piping as well as external should be insulated. This includes at least 1m from the hot water outlet of the tank, as this copper pipe can be a significant point of passive heat losses.

5.6 System Filling and Air Purge
After all the plumbing connections have been made, the solar hot water system needs to be filled with water and the collector loop purged of air. This should be completed prior to insertion of evacuated tubes.

To fill the system:
1. Open up one or more hot water fixtures at the site
2. Open the cold mains line to the tank
3. Turn the pump dial to speed 3 and connect it directly to the electricity mains rather than the controller.
4. Where an air-relief valve has been installed, air will be automatically released from the collector loop.
5. Filling is completed once there is a constant stream of water exiting from the hot water fixtures. Set the pump dial to speed 1 and reconnect the pump to the controller.

5.7 Evacuated Tubes and Heat Pipes
The Thermann evacuated tube solar collector is a simple “plug and play” system. See section 4.3.2 Unpacking of Components for details regarding the unpacking of the evacuated tubes. Use the following section as a guide to installing evacuated tubes.

5.7.1 Installation Notes
- The powder content of the heat paste may have settled during freight and storage. To ensure optimal thermal conductivity of the paste, place the heat paste tube in a glass of warm water for several minutes.
- If weather conditions are dusty, take care to ensure heat paste is not contaminated with impurities, as this may reduce thermal conductivity and efficiency of the heat paste.
- If weather conditions are wet, take care to ensure water does not enter the inside of the evacuated tube.

5.7.2 Installation Guide
1. Open the evacuated tube box on the side with the heat pipes.
2. Pull the heat pipe out ~10cm and ensure to keep the rest of the tube shaded.
3. Coat each heat pipe bulb with heat transfer paste, this can be applied using a piece of foam insulation.
4. Take out the evacuated tube and turn it upside-down (heat pipe down) before turning it back upright (heat pipe up). Repeat this several times to disperse the copper powder within the heat pipes.
5. Guide the heat pipe into the inside of the header port. Push the heat pipe in full depth.
6. Use a damp cloth, to lubricate the outer surface of the evacuated tube and the rubber ring in the manifold to minimize friction during insertion.
7. Insert the evacuated tube using a slight twist and pushing action.
8. Repeat steps 3-7 for the remainder of the tubes.
9. Using provided tube clips, secure the evacuated tubes into the bottom track.
10. Wipe down each evacuated tube with a damp cloth to ensure a polished and clean installation.

5.8 Auxiliary Boosting Components

5.8.1 Electric Booster Tank Thermostat and Element Setup

WARNING: All electrical connections must be completed by a qualified electrician.

- The thermostat should be set to 60°C or above as per AS/NZS 3498.
- To adjust the temperature setting:
  » Disconnect the electrical power supply to the tank
  » Remove the element cover
  » Using a screw driver, rotate the thermostat dial to the desired temperature.
- Where off-peak periods are unavailable it is advisable that a timer be installed to heat the system up to 60°C at least: i) once per week (bottom element tanks), or; ii) once per day (middle element tanks) to prevent legionella formation. See section 2.5 Legionella Control.
6. Post Installation

6.1 Commissioning
To ensure optimal operation and to maintain the integrity of Thermann solar hot water systems, commissioning is an essential process. Ensure that each of the following processes is carried out prior to leaving the site.

6.1.1 System Operation Check
Given good sunlight, the evacuated tubes will begin to produce heat after a 5-10 minute “warm up” period. There should be an observable increase in the temperature reading at the roof sensor on the controller. When there is an 8°C temperature differential between ROOF and TANK sensors the circulation pump should turn on.

After initial completed installation of collector, watch the operation of the pump and controller for at least 5 ON/OFF cycles or 15 minutes as the system stabilises. This process may take longer on overcast or cold conditions.

6.1.2 Photo Records
Take several photos of the installed product including: plumbing lines to/from the tank and collector and sensor port connections. These will serve as an important record for future servicing or warranty issues.

6.1.4 Rebate Forms
Complete any applicable rebate forms that require an installers signature prior to leaving the site.

6.2 Maintenance
Under normal conditions the solar collector is maintenance free. Please refer to the documentation provided by the manufacturer of other components for maintenance guidelines.

Maintenance and servicing should only be completed by a certified plumber, with experience in solar hot water systems.

6.2.1 Damaged Tubes

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING: When replacing damaged tubes follow all relevant OH&amp;S policies. Protective clothing is to be worn at all time. WEAR thick leather gloves when handling the heat pipe. WEAR safety glasses at ALL times when handling the glass tubes.</td>
</tr>
</tbody>
</table>

- If a tube is broken it should be replaced as soon as possible to maintain maximum collector performance. However, the system will continue to operate safely even with a damaged tube.
- Any broken glass should be cleared away to prevent injury.
- To replace a tube:
  1. Remove the tube clip, slide broken tube out and carefully pick up any glass pieces and dispose of appropriately.
  2. Avoid touching the glass wool insulation inside the manifold with bare hands, as it can cause mild skin irritation.
  3. If the heat pipe is not damaged, it can be left in place and a new evacuated tube inserted, guiding the heat pipe down the groove between the evacuated tube inner wall and heat transfer fin.

- If the heat pipe is not damaged, it can be left in place and a new evacuated tube inserted, guiding the heat pipe down the groove between the evacuated tube inner wall and heat transfer fin.

- To replace a tube:
  1. Remove the tube clip, slide broken tube out and carefully pick up any glass pieces and dispose of appropriately.
  2. Avoid touching the glass wool insulation inside the manifold with bare hands, as it can cause mild skin irritation.
  3. If the heat pipe is not damaged, it can be left in place and a new evacuated tube inserted, guiding the heat pipe down the groove between the evacuated tube inner wall and heat transfer fin.

- If a tube is broken it should be replaced as soon as possible to maintain maximum collector performance. However, the system will continue to operate safely even with a damaged tube.
- Any broken glass should be cleared away to prevent injury.
- To replace a tube:
  1. Remove the tube clip, slide broken tube out and carefully pick up any glass pieces and dispose of appropriately.
  2. Avoid touching the glass wool insulation inside the manifold with bare hands, as it can cause mild skin irritation.
  3. If the heat pipe is not damaged, it can be left in place and a new evacuated tube inserted, guiding the heat pipe down the groove between the evacuated tube inner wall and heat transfer fin.

- If a tube is broken it should be replaced as soon as possible to maintain maximum collector performance. However, the system will continue to operate safely even with a damaged tube.
- Any broken glass should be cleared away to prevent injury.
- To replace a tube:
  1. Remove the tube clip, slide broken tube out and carefully pick up any glass pieces and dispose of appropriately.
  2. Avoid touching the glass wool insulation inside the manifold with bare hands, as it can cause mild skin irritation.
  3. If the heat pipe is not damaged, it can be left in place and a new evacuated tube inserted, guiding the heat pipe down the groove between the evacuated tube inner wall and heat transfer fin.

6.2.2 Insulation
- The plumbing pipes running to and from the collector should be well insulated. This insulation foam should be checked periodically (at least once every 3 years).
- Ensure protective cover/foil is in good condition, replace where required.

6.2.3 Draining the System
Draining of the collector may be required when servicing or performing maintenance on the system. Periodic flushing of the system is not required unless in areas with hard water resulting in scale formation in the bottom of the tank.

Follow the steps below to drain the collector:
1. Turn off the mains water supply to the solar storage tank.
2. If the storage tank is being drained,
   a) Disconnect all power supply to water heater (for electric boosted tanks).
   b) Release pressure in the tank by carefully operating the PTRV release lever.
   c) Undo the cold inlet and attach a drain hose.
   d) Operate the PTRV release lever allowing air into the heater and water to drain via the hose.
3. If the storage tank is not being drained,
   a) Isolate piping to and from the solar collector and immediately undo fittings to open drain lines.
   b) Open an air vent or drain cock, on the manifold outlet to allow air to enter the system.
   c) Allow the manifold to sit in a vented state for 5-10min to allow the manifold to boil dry (may need longer in poor weather).
   d) Close the air vent or drain cock.
4. Re-fill the system by following the same procedure outlined in section 5.6 System Filling and Air Purge.

6.2.4 Over Pressure Protection Maintenance
The lever on the PTRV should be carefully lifted and placed down once every 6 months, this will help prevent any debris or scale build up in the valve. Ensure the drain pipe from the PTRV is clear.

This should be similarly done for the expansion control valve on the cold mains line (if there is one installed).

6.2.5 Magnesium Anode Replacement
Glass-lined storage tanks have a magnesium anode inserted into the tank. This anode prevents internal corrosion that will otherwise drastically shorten storage tank life. Thermann recommend the anode be inspected at least every three (3) years, and serviced as required.
7.2 Conditional Requirements

7.2.1 Wind Loading Conditions
The localised wind loading conditions can differ depending on a number of factors. These factors can vary greatly depending on location. What may be correct in one street or suburb, may be different in the next. The Wind loading parameters include: wind region, topography and terrain category. Figure 16 illustrates how Australia has been categorized. For more information on how to classify wind-loading parameters see AS/NZS 1170.2 – Wind Actions or consult a local structural engineer.

Figure 16. Wind Region Map of Australia


7.2.1.1 Wind loading Conditions in region a/B
Wind speed: The Thermann mounting frame for Region A and B is certified up to wind speeds of 205 km/h.
Terrain Category: 2, 3 and 4. Terrain Category 2 (TC2) is characterized as an open terrain with only a few scattered obstructions to wind. TC3 and TC4 typically have more obstructions to wind and are more conservative terrain categories.
Topography: Flat topography. This means that the intended install site can not be located on a hill or escarpment unless subjected to prior additional engineering approval.

7.2.1.2 Wind loading Conditions in region C
Wind speed: The Thermann mounting frame for Region C is certified up to wind speeds of 249 km/h.
Terrain Category: 2,3 and 4. See 7.2.1.1
Topography: Flat topography. See 7.2.1.1

7.2.2 Installation Conditions
For mounting frame certification to apply, the following installation conditions must be met.
**Batten/Purlin Spacing:** 600, 900, 1500 or 1800mm.

**Batten/Purlin Screws:**
- Timber Battens/Purlins: 14G Ø6.3mm timber screw, with minimum 35 mm embedment into battens, Minimum joint group JA.
- Steel Battens/Purlins: 14G Ø6.3mm tek screw. Minimum steel thickness 0.75 mm, Grade G550.
- Table 6 and 7 show the number of screws required per track for a flush-mounted and a tilt-mounted system respectively.

**Maximum height of install:** 10 m above ground.

**Flush Mount:** roof pitch needs to be 20-45° to the horizontal.
- Existing Roof Check: the structural adequacy of supporting roof members must be confirmed by a practicing structural engineer prior to installation, unless a roof rail is used for every batten location.

**Tilt Mount:** roof pitch needs to be 0-10° to the horizontal.
- Region A and B: Maximum tilt angle 45° to the horizontal.
- Region C: Maximum tilt angle 30° to the horizontal.
- Existing Roof Check: a practicing structural engineer prior to all installations must confirm the structural adequacy of supporting roof members.

**Edge Exclusion Zones** — As per AS/NZS 1170.2:2011, the flush mounted and tilt-mounted frame systems need to be installed within the internal roof zone. The edge exclusion zones is calculated from the minimum of 0.2x'D' (width of the building), 0.2x'B' (length of the building) and 'H' (average height of the building).

---

### Table 6. Screw Fixing and Frame Configurations for Flush Mounted Systems

<table>
<thead>
<tr>
<th>Wind Region</th>
<th>No. of tracks</th>
<th>No. of fixings per track</th>
<th>No. of tracks</th>
<th>No. of fixings per track</th>
<th>No. of tracks</th>
<th>No. of fixings per track</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Timber Batten</td>
<td>Steel Batten</td>
<td>Timber Batten</td>
<td>Steel Batten</td>
<td>Timber Batten</td>
</tr>
<tr>
<td>Wind Region A</td>
<td>30 Tubes</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Wind Region B</td>
<td>22 Tubes</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Wind Region C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

### Table 7. Screw Fixing and Frame Configurations for Tilt Mounted Systems

<table>
<thead>
<tr>
<th>Wind Region</th>
<th>No. of tracks</th>
<th>No. of fixings per track</th>
<th>No. of tracks</th>
<th>No. of fixings per track</th>
<th>No. of tracks</th>
<th>No. of fixings per track</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Timber Batten</td>
<td>Steel Batten</td>
<td>Timber Batten</td>
<td>Steel Batten</td>
<td>Timber Batten</td>
</tr>
<tr>
<td>Wind Region A</td>
<td>30 Tubes</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wind Region B</td>
<td>22 Tubes</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wind Region C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

In each case there are only two screws per track required for the roof rail.

---

1 Battens and purlins are the same components and are usually located horizontal, or perpendicular to the roof pitch. This differs from rafters which are situated parallel to the roof pitch.
7.4 Mounting Frame Configurations

7.4.3 22 Tube Flush Mount

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>QTY (22 Tube, 3 Leg)</th>
<th>QTY (22 Tube, 5 Leg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 Roof Rail</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>AL-L Bracket</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Top Attachment Plate</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>AL-Front Track</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Clip Fastener</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Tube Clip</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>AL-Bottom Track</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Bottom Attachment Plate</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

7.4.4 22 Tube Tilt Mount

SPACING (1500mm or 1800mm) θ

No. | Name                           | QTY (22 Tube, 3 Leg) | QTY (22 Tube, 5 Leg) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 Roof Rail</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>AL-L Bracket</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>30° Rear Leg</td>
<td>35</td>
<td>//</td>
</tr>
<tr>
<td>4</td>
<td>45° Rear Leg</td>
<td>//</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>AL-Rear X Brace</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Top Attachment Plate</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>AL-Tri-Plate</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>AL-Front Track</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>AL-Bottom Track</td>
<td>//</td>
<td>//</td>
</tr>
<tr>
<td>10</td>
<td>Clip Fastener</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Tube Clip</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Bottom Attachment Plate</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

REAR LEG (LO = 844mm, HI = 1344mm)

LO LEG POSITION

θ = 30°

θ = 45°
7.4.5 30 Tube Flush Mount

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Qty (30 Tube, 3 Tracks)</th>
<th>Qty (30 Tube, 5 Tracks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Roof Rail (22)</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>AL-L-Bracket (12)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Top Attachment Plate (6)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>AL-Front Track (3)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Clip Fastener (30)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Tube Clip (30)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>AL-Bottom Track (1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Bottom Attachment Plate (6)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

7.4.6 30 Tube Tilt Mount

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Qty (30 Tube, 3 Leg)</th>
<th>Qty (30 Tube, 5 Leg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Roof Rail (22)</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>AL-L-Bracket (12)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>30° Rear Leg (35)</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>45° Rear Leg (35)</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>AL-Rear X Brace (4)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Top Attachment Plate (6)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>AL-Tri-Plate (6)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>AL-Front Track (3)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>AL-Bottom Track (1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Clip Fastener (30)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Tube Clip (30)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>Bottom Attachment Plate (6)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
7.5 Thermann Component Information

7.5.1 Glass Lined Storage Tank Dimensions

Table 8. Glass lined tank dimensions

<table>
<thead>
<tr>
<th>Measurements (mm)</th>
<th>250L BOT</th>
<th>250L MID</th>
<th>315L BOT</th>
<th>315L MID</th>
<th>400L BOT</th>
<th>400L MID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>648</td>
<td>648</td>
<td>648</td>
<td>731</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>1388</td>
<td>1388</td>
<td>1682</td>
<td>1731</td>
<td>1731</td>
<td></td>
</tr>
<tr>
<td>HW outlet</td>
<td>1167</td>
<td>1167</td>
<td>1470</td>
<td>1474</td>
<td>1474</td>
<td>1474</td>
</tr>
<tr>
<td>PTRV port</td>
<td>1167</td>
<td>1167</td>
<td>1470</td>
<td>1474</td>
<td>1474</td>
<td>1474</td>
</tr>
<tr>
<td>Top sensor</td>
<td>759</td>
<td>759</td>
<td>841</td>
<td>841</td>
<td>841</td>
<td>841</td>
</tr>
<tr>
<td>Bottom sensor</td>
<td>369</td>
<td>369</td>
<td>369</td>
<td>369</td>
<td>369</td>
<td>369</td>
</tr>
<tr>
<td>Solar return</td>
<td>564</td>
<td>564</td>
<td>509</td>
<td>564</td>
<td>564</td>
<td>564</td>
</tr>
<tr>
<td>Solar flow</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>Cold Water Inlet</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 9. Pump station dimensions

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Label</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lid Height</td>
<td>A</td>
<td>398</td>
</tr>
<tr>
<td>Lid Width</td>
<td>B</td>
<td>178</td>
</tr>
<tr>
<td>Lid</td>
<td>C</td>
<td>96</td>
</tr>
<tr>
<td>Base Plate Height</td>
<td>D</td>
<td>350</td>
</tr>
<tr>
<td>Base Plate Width</td>
<td>E</td>
<td>160</td>
</tr>
</tbody>
</table>

7.5.3 Thermann Pump Station Dimensions

Figure 18. Glass lined tank layout

Figure 19. Pump station cover layout

Table 11. Thermann TH-22 Collector Specifications

- **Materials of Construction**
  - Evacuated tubes: 1.8mm Borosilicate 3.3 glass
  - Absorber: Al-N on Al on glass
  - Heat pipes: High purity copper
  - Heat transfer fins: Aluminium
  - Rubber components: HTV Silicone rubber
  - Stainless mounting frame: 439 Stainless steel
  - Aluminium mounting frame: 6005-T5 Anodised Al
  - Manifold casing: 5005-H16 Anodised Al

- **Performance Data:**
  - Ideal flow rate: 1.5 L/min
  - Max flow rate: 15 L/min
  - Peak power output: 1422kW *
  - Eta0: 0.687 *
  - a1 (W/(m²K)): 1.505 *
  - a2 (W/(m²K)): 0.0111 *

- **Physical Specifications**
  - Aperture area: 2.07m²
  - Gross area: 3.28m²
  - Gross dry weight: 71.3kg
  - Fluid capacity: 550ml
  - Max pressure: 800KPa
  - Stagnation temperature: 220°C

Figure 20. Collector layout

Table 10. Collector dimensions

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Dry Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Width</td>
<td>A</td>
</tr>
<tr>
<td>Collector Length</td>
<td>B</td>
</tr>
<tr>
<td>WO/Tubes</td>
<td>W/Tubes</td>
</tr>
<tr>
<td>22 Tubes</td>
<td>1540 mm</td>
</tr>
<tr>
<td>30 Tubes</td>
<td>2240 mm</td>
</tr>
</tbody>
</table>

* Data from ITW report 09COL805. Calculated at midday

---

7.5.5 Collector Technical Specifications: Technical data on Thermann solar collector construction, performance and physical specifications.

Table 12. Thermann TH-30 Collector Specifications

- **Materials of Construction**
  - Evacuated tubes: 1.8mm Borosilicate 3.3 glass
  - Absorber: Al-N on Al on glass
  - Heat pipes: High purity copper
  - Heat transfer fins: Aluminium
  - Rubber components: HTV Silicone rubber
  - Stainless mounting frame: 439 Stainless steel
  - Aluminium mounting frame: 6005-T5 Anodised Al
  - Manifold casing: 5005-H16 Anodised Al

- **Performance Data:**
  - Ideal flow rate: 2 L/min
  - Max flow rate: 15 L/min
  - Peak power output: 1944kW *
  - Eta0: 0.687 *
  - a1 (W/(m²K)): 1.505 *
  - a2 (W/(m²K)): 0.0111 *

- **Physical Specifications**
  - Aperture area: 2.83m²
  - Gross area: 4.4m²
  - Gross dry weight: 95kg
  - Fluid capacity: 710ml
  - Max pressure: 800KPa
  - Stagnation temperature: 220°C

---

Figure 21. Collector layout

Figure 22. Collector Performance
2. This Warranty is effective for all Thermann Solar Hot Water Heating Systems manufactured and installed after 1 January 2012.

3. If the Customer has not paid in full for the Thermann Solar Hot Water Heating System then this Warranty does not apply.

4. The Thermann Solar Hot Water Heating System and its components are covered by a warranty against defective factory parts or workmanship from the date the Thermann Solar Hot Water Heating System is installed for the relevant period for such component as outlined in Table 1 below - Warranty periods. If the date of installation is unknown, the Warranty commences one (1) month after the date of manufacture.

### Table 13. Warranty periods

<table>
<thead>
<tr>
<th>Component</th>
<th>Warranty Period (Parts Only)</th>
<th>Warranty Period (Parts &amp; Labour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manifold and Mounting Frame</td>
<td>15 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Evacuated Tubes and Heat Pipes</td>
<td>15 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Thermann Controller and sensor leads</td>
<td>1 year (All states)</td>
<td>5 years (VIC only)</td>
</tr>
<tr>
<td>Circulation Pump</td>
<td>2 years (All states)</td>
<td>5 years (VIC only)</td>
</tr>
<tr>
<td>Quickie Kit (including PFR Valve and Tempering Valve)</td>
<td>2 years</td>
<td>5 years (VIC only)</td>
</tr>
<tr>
<td>Thermann Glass Lined Tank (does not include element and thermostat)</td>
<td>10 years on cylinder</td>
<td>1 year</td>
</tr>
<tr>
<td>Tank Thermostat &amp; Element</td>
<td>1 year</td>
<td>1 year</td>
</tr>
</tbody>
</table>

5. This Warranty is for normal domestic use of the Thermann Solar Hot Water Heating System only.

6. To the extent a claim falls under the ‘Parts Only’ Warranty Period, the Warranty covers the repair and/or replacement of such failed component in the Thermann Solar Hot Water Heating System free of charge. However, the transport, installation and labour costs of repairing the component or delivering the replacement component and removing and replacing the existing component will be the responsibility of the Customer of the existing Thermann Solar Hot Water Heating System.

7. To the extent a claim falls under the ‘Parts and Labour’ Warranty Period, the Warranty covers the repair and/or replacement of such failed component in the Thermann Solar Hot Water Heating System and any associated labour costs free of charge.

8. The decision to repair or replace the component and the subject of the Warranty will be entirely at the discretion of Thermann.

9. Where an Thermann Solar Hot Water Heating System or a component thereto is repaired or replaced by Thermann, the balance of any original Warranty Period will remain effective. The repaired or replaced part does not carry any additional warranty period.

10. Upon installation of the Thermann Solar Hot Water Heating System, the licensed plumber who installed the Thermann Solar Hot Water Heating System must complete a customer installation record form containing the customer’s contact details, product installation date, product serial numbers, licensed plumber contact details, summary of system format and contact phone number(s) of the merchant and/or group. A copy of the completed form should be left with the customer, a copy kept on permanent file by the installing plumber and a copy sent to Thermann.

11. The Thermann Solar Hot Water Heating System must be installed in accordance with Thermann’s installation instructions, and all relevant local, state and national statutory requirements, including but not limited to, AS3500.4 & 5, AS5601, AS3000 and AS2712.

12. Installation must be completed by registered plumbers, gas fitters and electricians that are licensed in the State or Territory in which the installation is completed.

13. The electrical system components must be installed in a domestic application and connected to a 240V power supply by a qualified electrician in accordance with AS3000.

14. Thermann reserves the right to alter the design, components or construction to its Thermann Solar Hot Water Heating System. Such alterations shall not constitute a defect in design or construction under this Warranty.

15. Any claim under this Warranty must include full details of the defect and/or damage to the Thermann Solar Hot Water Heating System. Thermann’s standards must be made within one (1) month of the detection of the defect.

16. Dated proof of purchase is required prior to commencement of any work under this Warranty.

17. This Warranty does not apply to any defects or damage NOT due to faulty factory parts or workmanship including, but not limited to, defects or damage caused by or resulting from:

   a) accidental damage, storm damage, vandalism, failure due to misuse or abuse, or neglect of any kind;

   b) incorrect or improper installation of the Thermann Solar Hot Water Heating System, including but not limited to, installation otherwise than in accordance with the instructions contained in the owner’s manual supplied by Thermann or incorrect system selection;

   c) alteration or repair of the Thermann Solar Hot Water Heating System other than by a licensed plumber or by an approved Thermann agent;

   d) attachment of any parts or accessories other than those manufactured or approved by Thermann;

   e) freezing in regions with minimum temperatures below -15°C (in accordance with AS/NZS 2712:2007 freeze level 1);

   f) the power supply to the Thermann Solar Hot Water Heating System being cut;

   g) power surges;

   h) animals, birds and/or rodents;

   i) the solar collector being left dry (no liquid circulation) and exposed to daily sunlight (i.e. not covered) for a period exceeding 14 consecutive days;

   j) excessive water pressure, negative pressure (partial vacuum), excessive temperature, corrosive atmosphere, faulty plumbing and/or electrical wiring;

   k) sludge/sediment as a result of connection to a water supply from filtered or treated sources i.e. spring, dam, bore, river or town supply from a bore;

   l) contamination and corrosion from particles in the water supply;

   m) serial tags/stickers on any of the components being removed or defaced;

   n) the Thermann Solar Hot Water Heating System being relocated from its original point of installation; and

   o) the water stored in the cylinder exceeding at any time the following levels:

      - Total hardness 200 mg/litre or p.p.m
      - Total dissolved solids 600 mg/litre or p.p.m
      - Electrical conductivity 850 μS/cm
      - Chloride 250 mg/litre or p.p.m
      - Magnesium 10 mg/litre or p.p.m
      - Sodium 150 mg/litre or p.p.m
      - pH Min 6.5 to Max 8.5.

18. Thermann does not warrant any work conducted by the installer of the Thermann Solar Hot Water Heating System.

19. This Warranty only applies to the Thermann Solar Hot Water Heating System and its components and does not cover any plumbing or electrical associated parts, including but not limited to any parts supplied by any person installing the Thermann Solar Hot Water Heating System.

20. To the extent permitted by law, Thermann shall not be liable under this Warranty for any consequential loss or damage or any incidental expenses resulting from any breach of this warranty, including but not limited to, claims for damage to buildings, roofs, ceilings, walls, foundations, gardens, personal belonging or household effects, fixtures and fittings, any other consequential loss, damage or inconvenience, either directly or indirectly due to leakage from the Thermann Solar Hot Water Heating System or any other matter related to the system or its operation.

21. The benefits conferred by this Warranty are in addition to all other rights and remedies in respect of the Thermann Solar Hot Water Heating System, which the purchaser has under the Competition and Consumer Act 2010 and consumer protection legislation of the States and Territories. Nothing in this Warranty has the effect of excluding, restricting or modifying those rights.

22. Goods presented for repair may be replaced by refurbished goods of same type rather than being repaired. Refurbished parts may be used to repair/replace the goods.

23. Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and compensation for any other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.